神经网络、符号推理和神经符号推理在知识图谱上的应用
知识图谱推理是支持机器学习应用(如信息提取、信息检索和推荐)的基础组成部分。由于知识图谱可以被视为离散的符号知识表示,因此在知识图谱上进行推理可以自然地利用符号技术。然而,符号推理对于模糊和噪声数据是不容忍的。相反,深度学习的最新进展推动了在知识图谱上的神经推理,它对于模糊和噪声数据具有强大的鲁棒性,但与符号推理相比缺乏可解释性。考虑到这两种方法的优缺点,近年来人们开始尝试将这两种推理方法结合起来。在这项调查中,我们全面审视了符号推理、神经推理和混合推理在知识图谱上的发展。我们对两个具体的推理任务进行了调查,即知识图谱补全和知识图谱问答,并在一个统一的推理框架中对它们进行了解释。我们还简要讨论了知识图谱推理的未来发展方向。